
 

This paper may contain confidential information.

 

Page 1 of 13

 

Please do not circulate without FTC approval.

 

Issues for a “Do Not Email” List

 

Matt Bishop

 

Department of Computer Science

 

1

 

University of California, Davis
1 Shields Ave.

Davis, CA 95616-8562

bishop@cs.ucdavis.edu

 

phone

 

: (530) 752-8060

 

1. Introduction

 

The ubiquity of the problem of spam is evident to anyone who uses a computer. Unsolic-
ited electronic email carries offers for items such as drugs, software, or sexual aids, and nasty 
attachments such as Trojan horses, computer viruses, and computer worms. Numerous 
approaches to handling spam have failed. There is little reason that spam will decrease.

The “do not call” telephone list has been remarkably successful in reducing the number of 
calls that people receive from telemarketers. The FTC is considering having a “do not email” 
(DNE) list, similar to the “do not call” list. A Request for Information was issued.

This report begins with a discussion of what spam is. It then summarizes the goals of a 
DNE list. It then discusses three models of administering the DNE list, and several issues central 
to such a list. We conclude with a discussion of the key points underlying difficulties in selecting 
appropriate technical mechanisms.

 

2. Definitions

 

The purpose of a DNE list is to reduce the amount of spam that people receive. However, 
the exact definition of spam is unclear. The title of the CAN-SPAM Act defines it as “non-solicited 
pornography and marketing”. Traditionally, there has always been an element of mass e-mailing 
in the definition of spam. Thus, a single unsolicited letter of marketing matter or pornography, 
sent to a single recipient, may be unwelcome, but it is not spam in the traditional sense. Yet if the 
same letter were sent to many thousands of people, it would be considered spam.

In this report, we distinguish between two types of unsolicited email. UCE, or unsolicited 
commercial email, is email that advertises a product or service (pornographic or otherwise) and is 
sent to a large number of people. This is the traditional definition of spam.

The second type of unsolicited email is more pernicious and dangerous. This email is an 
attempt to trick the recipient into compromising herself or her system. For example, some contain 
an attachment designed to send copies of itself to everyone in the recipient’s address book, 
thereby flooding the networks with email (a 

 

computer worm

 

); some contain an attachment 
designed to delete files on the recipient’s computer, or to create back doors through which the 
senders can break in (a 

 

Trojan horse

 

); some contain an attachment that inserts itself into files on 

 

1. Affiliation included for identification purposes only. The opinions expressed in this paper are those of the 
author alone, and not necessarily the opinions of any other person, entity, agency, or organization.



 

This paper may contain confidential information.

 

Page 2 of 13

 

Please do not circulate without FTC approval.

 

the user’s system and damages them (a 

 

computer virus

 

); and some contain other forms of this 
malicious content that is triggered by the recipient activating the attachment (or, under some mail 

readers, by simply reading or selecting the letter

 

2

 

). Others, which do not have attachments, direct 
the recipient to click on a hyperlink and enter her name and password to preserve a bank account, 
for example—except the link goes to the thief’s site, thereby tricking the recipient into giving the 
thief a user name and password for a legitimate bank account (a 

 

phishing attack

 

). These are not 
“commercial” email messages in the traditional sense of “commercial”, so the term UCE does not 
apply. But such letters are typically sent to many thousands of addresses, and constitute a serious 
problem akin to UCE. We refer to these as BUE, for bulk unsolicited email.

In this report, the term “spam” refers to both UCE and BUE.

 

3. Goals of a DNE List

 

The purpose of the DNE list is to reduce the amount of spam. To this end, there are four 
specific goals that pertain to any implementation of the DNE list.

1. The e-mail addresses on the DNE list must be used only to determine who 

 

not

 

 to send spam 
to. If the list is made available for other purposes, or is used for other purposes, it will provide 
a source of confirmed email addresses for any spammer to use. In practical terms, this means 
that the list must be kept confidential from the public. It also means that, if the list is made 
available to marketers, every person in that marketing group that sees the list has to be trusted 
not to divulge addresses on the list, not to make the list available to others, and not to use the 
list to send spam personally.

2. The e-mail address on the marketers’ lists must be used only to determine who to send spam 
to. This flip side of the previous goal is to ensure that a marketer does not make its mailing list 
available to others when using the DNE list. That way, a marketer does not risk its competitors 
acquiring the marketing list and gaining a competitive advantage.

3. All mass e-mailers must use it. Otherwise, the amount of spam 

 

may

 

 decrease because of the 
commercial vendors who use the list, but the senders of spam who do not use the list will not 
decrease their output. Indeed, overall the amount of spam could still increase.

4. The use of the DNE list must not change the infrastructure of the Internet. First, the Internet is 
a global network, and only those portions within the United States are subject to U. S. law. 
The U. S. cannot enforce its required changes upon parts of the Internet not under its jurisdic-
tion, and enforcing changes only upon the U. S. infrastructure would effectively destroy the 
collaborative environment that the Internet relies upon. Further, changing protocols will cause 
existing services to break, or degrade. This is why the Internet Engineering Task Force 
requires much testing, analysis, and discussion to advance proposed protocols and protocol 
changes to standards. Finally, assuming these two problems could be overcome, the problem 
of providing software incorporating the changes and that would be universally accepted seems 
insurmountable.

These goals will not solve the problem of an 

 

authorized

 

 user using the DNE list for 

 

illegit-
imate

 

 purposes. Suppose, for example, The Electronic Marketing Co. is authorized to use the 
DNE list, and obtains a set of addresses on that list. It deletes those addresses from its email lists, 

 

2. For a more detailed description of the types of programs that can cause problems, see for example Chap-
ter 22, “Malicious Logic,” of Bishop [1].



 

This paper may contain confidential information.

 

Page 3 of 13

 

Please do not circulate without FTC approval.

 

thereby complying with the terms under which it may use the DNE list. But Robin, the employee 
with the job of culling the DNE addresses from the company’s list of addresses, goes home and 
contacts Spam Pour Vous, a foreign company that sends spam to email addresses in the United 
States. Robin sells them the addresses that the Electronic Marketing Co. has acquired. Robin is an 
authorized user, authorized to receive the DNE list to strike names from a company mailing list. 
But Robin is using the addresses also for an illegitimate purpose: to provide a spammer, outside 
the jurisdiction of the United States, with a set of valid, confirmed, email addresses in the United 
States. Likewise, illegitimate marketers, who register to obtain authorized access, can use the 
DNE list to obtain valid addresses. There are no technical means to prevent this type of subver-
sion. Some means to detect it will be discussed below.

 

4. Models of Distribution

 

 Assuming the DNE list is to be kept confidential (in the sense of goal 1), there are three 
models describing the way in which vendors’ email lists can be processed against the DNE list. 
Some preliminaries will make the discussion of the models simpler.

 

4.1. Preliminary: Storage of the List

 

Common to all models is the representation of the DNE list. The DNE list is composed of 
elements which must include the email address, and may include other elements such as associ-
ated name, the date the entry expires, and other information. Presumably, the email addresses are 
the only components considered for distribution. A naïve approach is to keep the email addresses 
in cleartext form. The problem is that anyone who acquires access to the list, licitly or illicitly, 
will obtain valid email addresses, which they can proceed to send spam to. Some mechanism to 
detect vendors abusing the list is needed. One way is to plant regulatory email addresses, called 

 

canary addresses

 

, in the DNE list, on the theory that the only email they will receive will come 
from spammers who acquired the DNE list. Section 8.5 below discusses this method, and the 
problems with it, in detail.

A more sophisticated approach is to encipher the addresses, and give cryptographic keys 
to those authorized to read the list. But this suffers from a similar problem, because when the list 
is used, it must be deciphered. This makes the cleartext addresses visible to the users, and to any 
unauthorized persons who have access to the system on which the list is deciphered. The issue of 
use of the list is still a problem.

An alternate approach follows that of password storage. Cleartext addresses are 

 

never

 

 
stored with the list. Instead, each address is transformed (

 

hashed

 

) using a cryptographically strong 
one-way function (called a 

 

hash function

 

 in this paper). The DNE list consists of the result of the 
hash function applied to each email address (each result is called a 

 

hash

 

). Such a function is not 

invertible and the result cannot be decoded to find the original email address.

 

3

 

 So the attacker who 
acquires the list cannot decode it, to determine the addresses on the list.

However, the vendor is able to determine whether a given email address is on the list. The 
vendor hashes the given email address, and checks to see if the resulting hash is on the list. If it is, 

 

3. More precisely, a widely accepted but unproven hypothesis in the theory of computation (specifically, 
that P 

 

≠

 

 NP) would need to be false for such functions not to exist. In practise, hash functions such as 
SHA-1 [4], MD5 [6], and others are considered non-invertible. They also meet the other criteria for a 
cryptographically strong hash function (see for example [1], pp. 237–238).



 

This paper may contain confidential information.

 

Page 4 of 13

 

Please do not circulate without FTC approval.

 

the given email address is on the DNE list and nothing should be sent to it. If it is not, the given 
email address is not on the DNE list. Note that this also tells an authorized spammer, who has 
obtained authorized access to the DNE list, that the address is on the DNE list and is therefore 
likely to be valid. In other words, lists containing email addresses, enciphered email addresses, 
and hashes all suffer from the same problem: any authorized user of the DNE list can check for 
valid addresses.

In many contexts, the use of hash functions is effective in thwarting attacks. But in this 
context, its effectiveness is questionable because a spammer can do what a vendor can do. If the 
spammer has the list of hashes, and wants to determine whether an address is on it, all the spam-
mer needs to do is compute the hash of the address, and see if the hash is in the list. This is called 
an 

 

off-line dictionary attack

 

. For example, using SHA-1, an attacker can test approximately 

450,000 addresses per second on a very simple computer system.

 

4

 

To speed the attack, an attacker could generate a list of addresses, hash each once, and 
compare the resulting list to the stolen list. So, for example, if the attacker wishes to determine 
which of 1,000 addresses are on a list of 3,000 hashes, she needs to compute 1,000 hashes and do 
3,000,000 comparisons in the worst case. On the system cited above, this would take slightly 
more than 2 milliseconds.

 

Salting

 

 increases the computational difficulty. A random string of characters (the “salt”), 
different for 

 

each

 

 address, is generated and combined with the address to produce the hash. The 
salt is stored with the hash. Then, an attacker will need to hash each address on the list once 

 

per 
entry on the hashed list

 

 to run the dictionary attack. Returning to our example, as each of the 
1,000 hashes has a different salt, the list of addresses to be guessed must be hashed 1,000 times 
(once per salt), for a total of 100,000 hashes and 300,000,000 comparisons in the worst case. This 
takes effectively 1,000 times as long as the case where salting is not used. On our example system, 
this would take about 2 seconds.

Salting is used in other contexts, especially in the protection of passwords [3]. As the salt 
is needed to determine whether a guessed password is correct, the salt is usually stored with the 
hash itself. Separating the salt from the hash gains little in terms of security, because both the salt 
and the hash must be available to the system to validate a supplied password. The overhead of 
having to keep track of which salt is associated with which hash, plus of having to retrieve both to 
validate a password, outweighs the risk of someone who illicitly obtains the hashes also obtaining 
the salts. A similar argument applies to hashes and salts when email addresses rather than pass-
words are being protected.

But the analogy with passwords breaks down because each password hash is associated 
with a user. When a user enters a password, the salt and password are combined to produce a hash, 
and exactly one entry is checked (the entry associated with that user). There are no names associ-
ated with the email addresses stored as hashes; indeed, doing so would defeat the purpose of stor-
ing the hashes of the addresses! But this means the repository must check each email address to be 
validated against 

 

every

 

 hash in the DNE list. So salting slows the scrubbing of submitted lists, too.

In the discussion of the models below, when we write of a vendor determining which 
addresses are on the DNE list, we mean that either the vendor sees the addresses in cleartext (if 

 

4. This figure was obtained using an off-the-shelf computer system running the freely available operating 
system FreeBSD 5.2, with a 200 GHz Intel® Pentium® 4 chip.



 

This paper may contain confidential information.

 

Page 5 of 13

 

Please do not circulate without FTC approval.

 

the addresses in the DNE list are not hashed), or uses the dictionary method to determine that 
some set of addresses has hashes that are on the distributed version of the DNE list (if the 
addresses in the DNE list are hashed). When we write of addresses in the DNE list being avail-
able, we mean either the cleartext addresses (if the addresses in the DNE list are not hashed) or the 
hashes of the addresses (if the addresses are hashed).

 

4.2. Preliminary: Contents of the List

 

Assume the DNE list contains hashes of the entries. If the entries are email addresses only, 
the vendor’s hashing of email addresses poses no problem. But if the entries are both email 
addresses and domain names, the issue of how to handle vendors’ email lists when those lists are 
to be hashed poses a problem. The problem is that the result of hashing a substring of a string 
bears no relation to the result of hashing the string. So, if domain names are allowed in the list, 
then the checking requires a two-step process. First, the email address is hashed and compared to 
the DNE list. Then each email domain (the part after the “@”) must be hashed and compared to 
the DNE list. This task can be made less onerous by marking each entry in the DNE list as an 
“address” or a “domain name”. In what follows, we assume this issue is handled appropriately for 
the type of list and entries.

 

4.3. Model #1

 

In this model, the DNE list is distributed to marketers. The marketers then determine 
which addresses on their mailing lists are also on the DNE list, and remove them. Updates to the 
DNE list are pushed out to the marketers, or the marketers must periodically request updates to 
the DNE list.

The primary advantages of this model are simplicity and confidentiality to the vendors. 
One architecture of systems following this model is to place the DNE list on a repository (which 
may be centralized or distributed) and give vendors access; the other is to give each vendor who 
agrees to use the DNE list a copy of that list. Updates may also either be made available on repos-
itories, or sent directly to the vendors. This satisfies goal 2, because each vendor keeps its own list 
and need never show it to any other entity. Further, the architecture requires only a set of systems 
to administer the list (add people, update entries, and provide access for the vendors).

The disadvantage to this model is the lack of confidentiality of the DNE list. Even assum-
ing communications between the vendor and the repository are secured (to preserve the confiden-
tiality, integrity, and availability of the DNE list), the addresses in both the DNE list and the 
vendor’s list are available to the people working for the vendor. Worse, if the vendor wanted 

 

not

 

 to 
abide by the rules, she would have a list of valid email addresses to use (if the list is not hashed) or 
a list of hashes to test (if the addresses on the DNE list are hashed). This disclosure of the ele-
ments of the DNE list violates goal 1.

 

4.4. Model #2

 

In this model, the DNE list is held at a central repository, or is distributed to trusted repos-
itories. The marketers then send their list of addresses to such a repository. That repository returns 
the list with addresses on the DNE list removed. As an alternative, the repository may return a list 
of addresses on both the DNE list and the marketer’s list, so the marketers may remove those 
addresses. The two approaches are equivalent because the marketer can compare the sent copy of 



 

This paper may contain confidential information.

 

Page 6 of 13

 

Please do not circulate without FTC approval.

 

the list with the one returned, and determine which addresses were deleted (and therefore on the 
DNE list).

The advantage of this model is concealment of the DNE list. The vendors never acquire a 
copy of it. Hence they cannot determine which addresses are on the list without submitting a list 
of addresses to a (presumably trusted) repository. Further, the repository can guard against dictio-
nary attacks by monitoring the frequency of list submission and the nature of the addresses on the 
lists. If the marketer submits lists every 10 minutes with no overlap, the repository may consider 
that evidence of a dictionary attack. If the marketer submits lists with no overlap and very large 
numbers of names, that might indicate an attempt to try to find names on the list (although it may 
also be evidence of an active e-mail marketer, and not indicate anything untoward). More study is 
needed to discover the anomalies that would indicate an attempt to compromise the list in this sit-
uation and to understand how spammers might try to evade them. This model satisfies goal 1 to 
the extent of protecting the full contents of the list, because the addresses on the DNE list are 
never disclosed to vendors except when the vendor has one of those addresses on the marketing 
list. But it does not keep 

 

all

 

 addresses on the DNE list confidential, as the vendor can determine 
which addresses are on both the DNE list and her list.

This method does not satisfy goal 2 because the vendors must submit their lists to the 
repository. If the repository is trusted, then there is no harm as the lists will not be made available 
to anyone other than the system checking the addresses against those on the DNE list. But 
whether the marketers will trust the repository is another issue, one beyond the scope of this tech-
nical paper. One way to ameliorate this problem, but at greater cost, is to provide the marketers 
with the set of salts used to produce the hashes in the DNE list. The marketers would then submit 
their lists of addresses as sets of hashes. The repository would then compare lists, and send back 
the set of hashes in (or not in) the DNE list. This protects the confidentiality of both lists as much 
as is possible (in the sense that both the vendor and the repository will know addresses in both 
lists, but neither will know any addresses in the other’s list but not in theirs). The problem with 
this method is the cost in computation; if the DNE list has 1,000,000 entries, the vendors must 
compute 1,000,000 copies of their list (one copy per salt, assuming each address in the DNE list 
has a unique salt) and send all lists to the repository. This appears infeasible in practise.

 

4.5. Model #3

 

In this model, the DNE list is held at a central repository, or is distributed to trusted repos-
itories. Unlike Model #2, however, the repositories are also mail forwarders. The vendor sends out 
email containing the spam, but sends it to one of the repositories. That repository simply elimi-
nates all recipients on the DNE list, and then forwards the email to all the others.

Like Model #2, the addresses on the DNE list are concealed from the marketers, and all 
the advantages of Model #2 apply here. So, this model satisfies goal 1. Further, the marketer never 
sees the list of email addresses to which spam is not forwarded, so in this sense—that the vendor 
never learns which of the addresses on the vendor’s list is on the DNE list—the confidentiality of 
the DNE list is more strongly protected than in Model #2.

The disadvantage of Model #2 still applies. The vendor must trust the repository not to 
disclose the list of recipients to other vendors, so this mechanism does not satisfy goal 2. Further, 
the vendor cannot submit hashes of her list, because the repository cannot forward the email to 
hashes. Indeed, the very nature of this model requires that vendors disclose their mailing lists to 
the repository. Further, the repositories must bear the burden of forwarding the mail, and if the 



 

This paper may contain confidential information.

 

Page 7 of 13

 

Please do not circulate without FTC approval.

 

vendors’ lists are large, this will take considerable resources. Hence the need for a set of reposito-
ries, each with a copy of the DNE list, and each with the computing power and network connec-
tivity to forward large quantities of email, is a critical issue.

 

4.6. Analysis

 

If 

 

all

 

 entries of the DNE list are to be kept confidential, then only Model #3 is acceptable. 
The problem is that if the vendor is told not to send email to a set of addresses, the vendor may 
assume, with a high degree of accuracy, that those addresses are on the DNE list and hence are 
valid. Presumably, the vendor will keep such addresses in a special list, to check newly obtained 
addresses against them to reduce use of the repository (this is especially true if the repository 
charges a fee for each address validation). The addresses in this list could then be compromised or 
misused, by the vendor or by others.

Similarly, if 

 

all

 

 addresses of the vendors’ lists are to be kept confidential, then only Model 
#1 is acceptable. Both other models require the addresses to be disclosed. Model #3 requires that 
the raw addresses be sent to the repository. Under Model #2, the vendor may submit hashes, but if 
any match hashes on the DNE list, the repository will be able to determine some addresses on the 
vendor’s list. Further, the procedure of hashing the lists once per salt, and checking them, will be 
very expensive.

The appropriateness of the model to be used therefore depends on the policy selected with 
respect to confidentiality of the lists. If protecting the contents of the DNE list is paramount, 
Model #3 is clearly the best. If protecting the contents of the vendors’ lists is paramount, Model 
#1 is clearly the best. But one suspects factors such as cost and ease of implementation and main-
tenance will affect the selection of the actual policy to be used, and in that case, Model #2 may 
turn out to be the best. In short, the policy requirements must guide the resolution of the technical 
issues.

Each of these models has its flaws. Model #1 discloses the DNE list to vendors. Model #2 
and Model #3 disclose the marketer’s lists to the repository. Model #3 also will require great net-
work connectivity to handle the sending of the letters. The acceptability of each problem in the 
models is a decision for the policy makers.

 

5. Requiring Use

 

Unfortunately, there is no technical way to achieve goal 3. The problem is that 

 

anyone

 

 can 
acquire email addresses, and anyone can email to any Internet email address. Given the architec-
ture of the Internet, it is simply not possible to force all email to flow through central servers to vet 
addresses. The Internet was designed to be robust in the face of widespread failures, and funneling 
all SMTP (email) traffic through some relatively small set of hosts would eliminate this. It would 
also create congestion in the networks, clogging key portions of the Internet and slowing the 
delivery of email to an unacceptable extent. As recent estimates are that 

 

31 billion

 

 pieces of email 

flow through the Internet daily

 

5

 

, avoiding this congestion would require thousands, if not tens of 
thousand or more, servers to check and forward the mail—and the management of these servers 
would be a major security problem, Further, the architectural and infrastructure changes required 
to implement such a funneling would not be widely accepted and could not be enforced.

 

5. This estimate is taken from http://www.spamfilterreview.com/spam-statistics.html on May 11, 2004.



 

This paper may contain confidential information.

 

Page 8 of 13

 

Please do not circulate without FTC approval.

 

Even assuming the above could be done, though, how does one determine whether a given 
email message is spam? Section 2 defines spam as UCE or BUE. But if Anne sends a letter to Bill, 
how can the central systems (in the sense discussed in the above paragraph) determine if Anne’s 
letter is one of a larger mailing that qualifies as UCE, or contains malicious content that would 
qualify it as BUE? The need to do the former implies the ability to monitor the contents of all 
emails, something that is clearly technically infeasible and repugnant to most societies. The latter 
implies the ability to analyze the bodies of all email, again requiring them to be read. From the 
technical point of view, the email would either need to be held while the analysis was conducted 
(which would create massive delays, not to mention extreme congestion about the central funnel-
ing systems) or email would be deleted erroneously, because of the emphasis on preventing possi-
ble spam. Again, from the technical point of view of keeping the Internet functioning, there is no 
known, workable solution to the problem of identifying any individual letter as spam.

What makes the above even more untenable is that what is “spam” to one individual may 
not be “spam” to another. The author periodically received BUE. Normally, he considers it spam, 
and discards it. But recently, some of his students and co-workers have begun a project requiring 
examples of a specific type of malicious content. The author no longer considers them spam in the 
sense of BUE. They are “research data” that he promptly forwards to his students and colleagues 
working on that project. As another example, if one receives a letter from the RIAA claiming that 
the individual is suspected of downloading copyrighted data, and the individual has not done so, 
does that qualify as “spam”? The RIAA would think not, but the individual might well think so. 
How would central nodes handle these cases? Absent some universally accepted policy (which 
seems infeasible because peoples’ opinions differ), there is no technical solution here.

 

6. Integration with the Internet

 

As indicated by goal 4, and discussed further in section 5, implementation of the DNE list 
must not rely upon changes to the Internet. It may encourage changes, or use new protocols, but 
must recognize that these changes and new protocols will 

 

not

 

 be adopted quickly. Further, 
because protocol design, and changes to the infrastructure, almost always have serious, unex-
pected side effects, any such proposed changes or protocols must be scrutinized carefully, tested, 
the results of the tests analyzed, changes made as needed, testing repeated under a variety of con-
ditions, and then the changes and protocols must be slowly deployed. The process for this 
involves the Internet Engineering Task Force (IETF), a body that analyzes proposed protocols 
from their proposal to their deployment. The IETF is a grass-roots organization, and the concerns 
of its members are varied, but all want to keep the Internet functioning. So, any changes must be 
carefully thought out and developed with the engineering components a critical consideration.

A second issue is how to integrate proposed changes with existing software. If the DNE 
list requires specific parties, such as vendors currently sending spam, to use software to interact 
with repositories, the software must take into account the multiplicity of systems used today. 
Developing software for Microsoft systems, for example, would prevent any vendor who used 
Linux-based systems, or Sun Solaris systems, from using the list (to cite two examples). The 
interactions with the DNE list must be devised to allow 

 

any

 

 vendor who wants to use that list to be 
able to do so. If existing software is to be modified, the software vendors must be persuaded to do 
so, and do so in a way that does not break their existing software. This technical issue will 
undoubtedly affect the selection of the policy for the DNE list.



 

This paper may contain confidential information.

 

Page 9 of 13

 

Please do not circulate without FTC approval.

 

Third, software and proposed changes must maintain backwards compatibility with exist-
ing software and protocols. The reason is that many sites will simply not adopt the changes. The 
commercial world has proven this, with (for example) Microsoft’s maintaining backwards com-
patibility on its Windows platforms. It applies equally well in other areas. For example, SMTP, the 
Internet’s primary electronic mail transport protocol, was developed by 1982 [5]; its latest incar-
nation (from 2001) does not “add new or change existing functionality of … the original SMTP 
(Simple Mail Transfer Protocol) specification of RFC 821” ([2], p. 1). This ensures that systems 
that are not upgraded will continue to interact with systems on the Internet.

Ensuring backwards compatibility is a difficult task because the correct functioning of sys-
tems and software depends upon assumptions that developers make about the environment in 
which the systems run. It requires considerable care and effort, and co-operation from those who 
do not wish to upgrade to the new mechanisms as well as those who do. Sometimes, people 
choose not to co-operate, or may not realize that they need to consider the upgrade.

For these reasons, requiring changes to the Internet to implement a DNE list is a poor use 
of resources from the technical point of view, unless one accepts that portions of the Internet users 
(vendors) will not use the DNE list, and unless one considers isolating portions of the Internet for 
some time (possibly permanently) is acceptable.

 

7. Other Issues

 

Several other issues affect the technical aspects of a DNE list but did not fit in elsewhere. 
They are summarized here.

 

7.1. Attackers and Systems With the DNE List

 

It is vital that the proposers, designers and implementers of the DNE list understand that 

 

any computer system can be compromised; security is a matter of costs and benefits, and is not an 
absolute

 

. The goal is to make the cost of breaking into a system greater than the benefits that the 
successful attacker will reap. This makes maintaining a cleartext list of addresses on the DNE list 
questionable, since even if attackers get the list, they will need to guess addresses rather than dis-
cover the set of cleartext addresses that are known to work (as they registered successfully for the 
DNE list). Further, if cleartext addresses are used, they might be accidentally exposed. Hence the 
addresses should reside on systems only in hashed form.

Sadly, the situation is worse than might appear. If consumers register using a web-based 
system (as seems likely), then in the period of time between the address being entered and it being 
hashed, that address is potentially visible to any attacker who gains access to the system. The 
developers of the software, systems, and procedures administering the DNE list must consider 
minimizing the threat posed by someone who breaks into the system as well as the threat of some-
one breaking into the system. The standard technique for this is a layered defense (called “defense 
in depth” in government, and an application of the principle of separation of privilege [7]).

The web-based interface that consumers use to register email addresses, and the interfaces 
that vendors use to submit their lists of addresses under Model #2 and Model #3 are also gateways 
to the system that must be protected. Presumably, these interfaces will be implemented using net-
work-based servers. Such services have a long history of being attacked, and being attacked suc-
cessfully. The implementers should assume that the interfaces and their supporting services will 
be attacked. They should have a layered defense to handle cases where the attacks succeed.



 

This paper may contain confidential information.

 

Page 10 of 13

 

Please do not circulate without FTC approval.

7.2. Dictionary Attacks on a Hashed DNE List

 

Although this has been alluded to in section 4, there are some aspects of this worth empha-
sizing. Recall that a dictionary attack consists of an attacker guessing an address, computing its 
hash, and then looking for that hash in the DNE list. (If the DNE list is composed of cleartext 
email addresses and domain names, this section is irrelevant.) If an attacker can obtain the list of 
hashes, then the attacker can launch a dictionary attack without fear of detection using her own 
computers (this is called an 

 

off-line dictionary attack

 

). However, if the attacker cannot obtain this 
list, then the only type of dictionary attack available is to supply email addresses to a repository, 
and see if any of them are marked as being on the DNE list. As mentioned in section 4.4, more 
study is needed to determine whether this type of attack can be detected.

 

7.3. Denial of Service Attacks

 

A reasonable question to ask is: what happens when the DNE list is not available? If 
Model #1 is used, the marketers will not be able to receive updates; if either of the other models 
are used, the repositories will be inaccessible and the vendors cannot validate their lists. In all 
three cases, how do consumers add their names to the DNE list should the administrative sys-
tem(s) be unavailable? A distributed denial of service (DDoS) attack on the repositories could eas-
ily create this situation.

A distributed denial of service attack may occur in many ways. First, a small set of users 
(or automated attack tools) could add random names to the DNE list. If the repositories cannot 
handle the volume of traffic, then legitimate consumers will be unable to access the service that 
adds names to the DNE list. The volume of traffic could be made as great as desired, especially if 
the attackers deposit tools to flood the repositories on systems that they break into. Also, depend-
ing on how addresses are validated, the amount of computation and network messages used to do 
the validation might overwhelm the system. Secondly, automated attack tools could simply flood 
the network connections into the repositories, preventing any legitimate network traffic from 
arriving. This would isolate the repositories. The attacks on Amazon and E-Bay a few years ago 
attest to the effectiveness of the attacks.

Unfortunately, because of the structure of the Internet, there are currently no effective 
ways to prevent such a denial of service attack. The impact of this fact upon the DNE list models 
is that the models assume the repositories are available to the vendors at all times. Model #1 
requires that the DNE list be sent over the network to the vendors, and that the repositories be 
available so the vendors can poll them for updates. Model #2 requires that the vendors and the 
repositories be able to exchange messages. Model #3 requires tremendous bandwidth to forward 
the letter to the addresses not on the vendor’s list. If the network, or the repository, is unavailable, 
the vendors cannot use DNE list. So a denial of service attack is a serious threat to the DNE list.

Researchers are investigating ways to ameliorate their effects, and to develop mechanisms 
and protocols to defeat such attacks. But these will not come to fruition in the short term, so the 
developers of the DNE list must be prepared to deal with such attacks, and take measures to miti-
gate them.

 

7.4. Centralized vs.Distributed

 

Consider the models in which the vendor wants to check a list of addresses for addresses 
on the DNE list (Model #1 and Model #2). The question of whether the DNE list should be avail-
able from a central server, a set of distributed servers, or a set of satellite servers affects the resil-



 

This paper may contain confidential information.

 

Page 11 of 13

 

Please do not circulate without FTC approval.

 

iency of the DNE list to denial of service attacks. A centralized server would have the DNE list on 
one host, which would be a single point of failure. Congestion in network traffic would also be a 
problem, as all vendors and customers would access the same server. Backup servers would ame-
liorate this problem, but the backup servers should be geographically (and logically) separate 
from the primary server. A second architecture is to maintain the list at a central site, but push 
copies of it to satellite servers that vendors could use. This distributes the load among various sites 
across the Internet, avoiding the congestion problem of a central server, and providing redundancy 
in case of a failure of the central server (or any of the satellite servers). Security is still a major 
concern; indeed, the distributed mechanisms increase the security risks (the degree depending on 
the specific mechanisms used). The reason is that the co-ordination, synchronization, and mainte-
nance of the distributed systems is more difficult to perform than those functions on a centralized 
server.

A distributed architecture would involve using a distributed database to contain the list. 
This introduces problems of synchronization, updating, and consistency. Various techniques solve 
these problems. 

Technically, it is unclear which design would work best. It depends upon the specific envi-
ronment and procedures for maintaining the systems that implement the DNE list.

 

7.5. Auditing Use of the Lists

 

If vendors are given access to the lists in such a way that they can determine any (or all) of 
the addresses on the lists, some mechanism must be in place to detect abuse of the list. One way to 
do this is to include addresses that the regulators will monitor. These addresses are called 

 

canary 
addresses

 

 or simply 

 

canaries

 

. Each vendor’s copy of the list is seeded with a different set of 
canaries. If email arrives at any canary, the regulators can tell which vendor is sending email to 
addresses on the DNE list.

The problem with this idea is that spammers may locate the canary address without refer-
ring to the DNE list, in which case a vendor will be erroneously accused of leaking the address. 
Spammers locate addresses in a wide variety of ways, including asking mail transfer agents for 
addresses to which they will deliver and generating random or pseudorandom guesses for account 
names followed by known domain names. Further, a vendor’s system may be compromised and 
the addresses obtained sold. Finally, the system on which the DNE list resides, or corrupt regula-
tors with access to the information on the list, may compromise the confidentiality of the list. So a 
canary address receiving email 

 

may

 

 indicate a problem with a vendor misusing the DNE list 
addresses, but is by no means conclusive proof.

 

8. Conclusion

 

The effectiveness of a DNE list raises several problems. The greatest problem is defining 
“spam” meaningfully. The second is defining the class of emailers who must use it. The third is 
catching vendors who must use it but do not. The fourth is measuring the effectiveness of the 
DNE list.

For purposes of this paper, spam was defined to be unsolicited commercial email (UCE) or 
bulk unsolicited email (BUE). However, as section 2 points out, the definitions are nebulous. 
Political parties have sent email to many thousands of recipients simultaneously. If one views the 
letters as “selling” a candidate or a political platform, are the letters spam? If the Catholic Church, 



 

This paper may contain confidential information.

 

Page 12 of 13

 

Please do not circulate without FTC approval.

 

or Jerry Falwell’s ministry, or People for the American Way, sends a mass mailing urging people 
to pray for peace, is that spam? If I send a letter selling Matt’s Miracle Medicine to one friend, 
that probably is not spam under any reasonable definition (because personal email to a friend is 
not spam). But if I send it to 10 people, is it spam? To 100 people? To 1,000 people? At what point 
does it become spam? The definition is imprecise, and in fact different for each individual. The 
relevant law defines spam to some degree, but the regulators may have to interpret the law in order 
to apply it to particular emails.

The second problem, implicit in the first, is to define the class of senders (called “vendors” 
or “marketers” throughout this paper) required to use the DNE list. Simply saying that people who 
send bulk email must use the list raises the question of what “bulk” email is. Exempting classes of 
people, such as political parties or churches, raises the issue of what a “political party” or a 
“church” is. Defining senders on the basis of recipients, such as “those who send emails designed 
for children ages 5–10”, is even more difficult because identities are not associated with email 
addresses; for example, the author’s son sometimes uses his father’s personal account to send and 
receive emails, and the author’s grandson uses his mother’s account (as he is 2 years old, his 
mother typically writes the letters and reads them to her son). So, who is the person associated 
with those accounts? This is why associating an identity with an email account is tricky; the 
account may be shared, or the class of consumers using the email address may vary over very 
short intervals of time, or email addresses may be monitored by supervisors or parents.

Complicating this problem is the international, global nature of the Internet. The author is 
not a lawyer, but it is his understanding of basic legal principles that United States law does not 
apply to people in Bulgaria, Hungary, Russia, or other countries in general. Certainly United 
States laws are not enforces in those countries. So, if a vendor from those countries sends spam to 
email addresses whose readers are in the United States, should the vendor be required to use the 
DNE list? If so, how does one enforce that requirement? There is no technical mechanism that can 
do so. The relevance of this is clear when one realizes that a multinational corporation obtaining a 
set of addresses on the DNE list may have its foreign subsidiary send the spam to those addresses 
with seeming impunity. How will the DNE list apply to spam originating from abroad?

The root of this problem is itself a third, different problem. There is no meaningful authen-

tication in the Internet.

 

6

 

 One cannot prove the origin of an ordinary piece of email, and all spam is 
ordinary email. So, how can one trace offending messages back to their source? There are two 
parts to this problem. The first is authenticating the originator, so that an independent third party 
can verify who sent it. The second is verifying the 

 

location

 

 of the sender, to ensure they are sub-
ject to the relevant laws and regulations. Given the mobility of people in the world today, the abil-
ity to use a myriad of email addresses, and the ability to hook a computer up to the Internet 
practically anywhere in the world, this is a non-trivial problem. By the time email is traced back to 

its origin

 

7

 

, the sender may have disappeared.

One obvious solution seems to be to require all spam to be watermarked or digitally signed 
by its originators. Enforcing this would require any such email without the watermark or digital 
signature to be discarded automatically. But how does an ISP distinguish between spam and non-

 

6. In technical terms, simple (and widely known) techniques allow anyone to forge the originating address 
of an email message, and with a bit more skill and luck forge IP addresses. This forging, or masquerad-
ing, as another entity is called 

 

spoofing

 

.
7. This assumes that such a trace is accurate and successful. Neither assumption may be true.



 

This paper may contain confidential information.

 

Page 13 of 13

 

Please do not circulate without FTC approval.

 

spam? As discussed above, this is infeasible. Taken to its extreme, one might think to require 

 

all

 

 
mail to be digitally signed or watermarked, and any mail not so signed or marked is to be dis-
carded. This would mean that every user on the Internet must have a cryptographic key for the sig-
nature, and a ubiquitous key distribution and validation infrastructure must be in place, or some 
similar mechanism for watermarking and validating watermarks. This would require that the 
Internet be re-engineered. Further, we have been unable to develop a widely used, generally 
accepted public key infrastructure; the mechanisms needed to do what is discussed above are con-
siderably more complex, as public key cryptography is 

 

not considered acceptable in many quar-
ters, especially by governments and government agencies that desire to be able to read enciphered 
electronic mail.

This leads to a fourth problem, ease of use. This report did not discuss issues such as how 
to register consumers and vendors, revocation and expiration of registration, and so forth. Experts 
in other areas (such as human factors) can provide information on the best way to handle these 
problems. From the point of view of security, the principle of psychological acceptability [7] 
requires that these matters be considered, and that the mechanisms adopted be as simple and 
straightforward to use as possible.

The final problem is how to measure the effectiveness of the DNE list. One issue is the 
precise purpose of the DNE list. Is it designed to lessen the flow of spam around the Internet, or to 
limit the amount of spam that individual email addresses receive? or is its primary purpose some 
mixture of the goals in section 3? If so, in what proportion? What are the specific criteria for judg-
ing the success or failure of the DNE list? Any serious proposal to implement a DNE list must 
describe a method for gauging the success of that list, so the relevant authorities can determine 
what needs to be changed should the DNE list not achieve its purpose.

Other issues, such as models for architecture, integration into the Internet infrastructure, 
and impact upon the Internet infrastructure, have been discussed. All raise serious technical 
issues. Solutions must be guided by policy considerations.

A “do not email” list raises many interesting technical, social, and political questions. This 
paper has presented the main technical issues, and touched on others. Their resolution is left to the 
developers of such a list, who must take into account the technical and non-technical environment 
in which such a list will function.

9. References

[1] M. Bishop, Computer Security: Art and Science, Addison-Wesley Publishing Company, 
Boston, MA (2003).

[2] J. Klensin, Simple Mail Transfer Protocol, RFC 2821 (Apr. 2001).

[3] R. Morris and K. Thompson, “Password Security: A Case History,” Communications of 
the ACM 22(11), pp. 594–597 (Nov. 1979).

[4] National Institute of Standards and Technology, Secure Hash Standard, FIPS PUB 180-1 
(Apr. 1995).

[5] J. Postel, Simple Mail Transfer Protocol, RFC 821 (Aug. 1982).

[6] R. Rivest, The MD5 Message Digest Algorithm, RFC 1321 (Apr. 1992).

[7] J. Saltzer and M. Schroeder, “The Protection of Information in Computer Systems,” Pro-
ceedings of the IEEE 63(9), pp. 1278–1308 (Sep. 1975).


